
chall3.md 9/30/2022

1 / 3

Writeup by Bonfee

Chall 3

Description

You managed to retrieve the attacker's payload. Your job is now to
understand what it does and to see if it can allow you to penetrate their
infrastructure. Good luck.

We are given an ELF binary, compiled in https://github.com/ponylang/ponyc

Details

1. The infrastructure server has only one CPU core.
2. We are given the libraries to LD_PRELOAD the elf binary

Webserver structure

root/
├── exploits
│ └── ed53fa7f6e3a109b1756f03baadfe44f2a991ffe08934798ef7ec101a7412399
│ ├──
d0a85535263f9485ff6274be19a73e87d390438d489107133e2d26c1ec7423b3
│ └── infos.txt
└── payload.bin

Authentication

All endpoints seem to be authenticated with:

Kim-Jong-Un:DoYouLikeMyCTF?
->

Authorization: Basic S2ltLUpvbmctVW46RG9Zb3VMaWtlTXlDVEY/

Notes

When called with --listen, payload.bin will act as a webserver.

When called normally it acts as an agent.

When the agent starts it will:

1. Make a post request to /enroll/:hash, where :hash is the sha256 of infos.txt, to identify the

agent. This post request includes in the body the base64 of infos.txt.

chall3.md 9/30/2022

2 / 3

2. The agent will look for a folder under /tmp/0dayz/, and for each file under that directory it will

make a post request to /upload/:agent_hash/:hash, where :hash is the sha256 of the

serialized file content. And the body of the post request contains the file content.

Upload file serialization

When the agent uploads a file it serializes the content in a data structure.

For example, if we have /tmp/0dayz/file1 with this content:

$ xxd /tmp/0dayz/file1
00000000: 4242 4242 4242 4242 4141 4141 4141 4141 BBBBBBBBAAAAAAAA

The http upload request will contain:

$ echo -ne
CwAAAAAAAAAQAAAAAAAAABEAAAAAAAAAIAAAAAAAAABCQkJCQkJCQkFBQUFBQUFBAA== |
base64 -d | xxd
00000000: 0b00 0000 0000 0000 1000 0000 0000 0000
00000010: 1100 0000 0000 0000 2000 0000 0000 0000
00000020: 4242 4242 4242 4242 4141 4141 4141 4141 BBBBBBBBAAAAAAAA
00000030: 00

The format

The format seems to be:

struct data {
 size_t type_id = 0x0b;
 size_t size = 0x10;
 size_t alloc = 0x11;
 size_t b = 0x20;
 unsigned char data[];
};

Info leak

We can leak data from the remote server by sending a corrupted msg and then downloading the file:

struct data {
 size_t type_id = 0x0b;
 size_t size = 0x10000;
 size_t alloc = 0x08;
 size_t b = 0x20;
 unsigned char data[] = "AAAAAAAA";
};

chall3.md 9/30/2022

3 / 3

Deserialization

By sending a message with a modified type_id we can make the binary deserialize an arbitrary

pony_type_t.

pony_deserialise()
> pony_deserialise_offset()
> > t = desc_table[id]; // <--- t is pony_type_t*

pony_type_t contains a couple of function pointers, which will get called shortly after

pony_deserialise_offset (recurse()).

Exploit

Leak libraries by sending a 0x80 sized message

Send a big message containing the spray of [ptr to adjacent pony_type_t] +
pony_type_t. The pony_type_t structs contain modified func ptrs (with a stack-pivoting gadget)

Then send a message with type_id equals to the average distance between desc_table and the

sprayed data we just sent.

If the spray succeded t = desc_table[id]; will get one of our fake pony_type_t
Our function pointer gets called, in rsi we have a pointer to the content of the message sent (the

one with the fake type_id)

Pivot stack to the content of the message, the ropchain mmaps a rwx region, memcpy the rest of the

message and execute shellcode

So the last message is :

type_id <--> distance between desc_table and our spray
data:
 > Stack pivot gadget
 > ropchain: RWX mmap + memcpy
 > shellcode: popen() + write() to socket

Flag

HXN{1f329793ed7d4b9b178de07eb257cfed}

